Optical Waveguide Theory

optical waveguide theory introduction

Light field in frequency domain

In linear system, the frequency remains the same. Therefore,

E(r,ω)=E(r,ω)eiφ(r,ω)e^(r,ω)\textbf{E}\left(r,\omega\right)=E\left(\textbf r,\omega\right) \cdot \mathrm{e}^{\mathrm{i}\varphi\left(\textbf r,\omega\right)} \cdot \hat{\textbf e}\left(\textbf r,\omega\right)

In this article, the bold character stand for vector in x, y, z, for example r=(x,y,z)\textbf{r} = (x, y, z).

The three components stand for amplitude, phase, and polarization, separately.

The relation of k,n,εk, n, \varepsilon

Here φ(r,ω)=0rkdrφ0\varphi\left(\textbf r,\omega\right) = \int_{0}^{\textbf r}\textbf k\cdot\mathrm{d}\textbf r-\varphi_{0}, k=2π/λ\textbf k = 2 \pi / \lambda represents the wave number, and importantly, the direction of k\textbf k is the direction of light wave. Here k=2πn/λ=nk0=ε/ε0k0k = 2\pi n/ \lambda = n k_0 = \sqrt{\varepsilon/\varepsilon_0} \cdot k_0, which related to the index of the material.

Maxwell Eq

In frequency domain, Maxwell Eqs are:

{×E=Bt×H=Dt+JD=ρB=0\begin{cases}\nabla\times\boldsymbol{E}=-\frac{\partial\boldsymbol{B}}{\partial t}\\\nabla\times\boldsymbol{H}=\frac{\partial\boldsymbol{D}}{\partial\boldsymbol{t}}+\boldsymbol{J}\\\nabla\bullet\boldsymbol{D}=\rho\\\nabla\bullet\boldsymbol{B}=0\end{cases}

In most real optical field, there is neither conduction current nor space charge. Therefore, J=0,ρ=0\textbf{J} = 0, \rho=0

In addition, we have

D=ε0E+PB=μ0H+M\begin{aligned}\boldsymbol{D}=&\varepsilon_0\boldsymbol{E}+\boldsymbol{P}\\\boldsymbol{B}=&\mu_0\boldsymbol{H}+\boldsymbol{M}\end{aligned}
  • In optical field, medium is Non-magnetic, so M=0B=μ0H\textbf{M}= 0, \textbf{B}=\mu_0\textbf{H}.
  • For D=ε0E+P\boldsymbol{D}=\varepsilon_0\boldsymbol{E}+\boldsymbol{P}, it is complex. When E\textbf E is independent of time, PE\textbf{P} \propto \textbf{E} . However, when it’s not, PE\textbf{P} \propto \textbf{E} should be convoluted. So,
    P=ε0+x(1)(tt1)E(r,t1)dt1\boldsymbol{P}=\varepsilon_0\int_{-\infty}^{+\infty}x^{(1)}\left(t-t_1\right)\boldsymbol{E}\left(\boldsymbol{r},t_1\right)\mathrm{d}t_1

    which indicates that the change of P\textbf{P} lags behind E\textbf{E} by some time. And we all know that the frequency of light is high, so it should be considered.

    D=ε0E+P=ε0{E++x(1)(tt1)E(r,t1)dt1}\boldsymbol{D}=\varepsilon_0\boldsymbol{E}+\boldsymbol{P}=\varepsilon_0\left\{\boldsymbol{E}+\int_{-\infty}^{+\infty}x^{(1)}(t-t_1)\bullet\boldsymbol{E}(\boldsymbol{r},t_1)\mathrm{d}t_1\right\}

    With Fourier Transformation, in frequency domain, we can simplify it to

    D(ω)=ε(ω)E(ω)\textbf D\left(\omega\right)=\varepsilon\left(\omega\right)\textbf E\left(\omega\right)

    εc(ω)\varepsilon_c\left(\omega\right) is always a complex number, the real part is phase shift and the imaginary part is loss.

Now, we can deduce the Maxwell eqs in frequency domain

×E=iωμ0H×H=iωDD=0H=0\begin{aligned}&\nabla\times\boldsymbol{E}=\mathrm{i}\omega\mu_0\boldsymbol{H} \\&\nabla\times\boldsymbol{H}=-\mathrm{i}\omega\boldsymbol{D} \\&\nabla\bullet{\boldsymbol{D}}=0 \\&\nabla\bullet{\boldsymbol{H}}=0\end{aligned}

As we have D(ω)=ε(ω)E(ω)\textbf D\left(\omega\right)=\varepsilon\left(\omega\right)\textbf E\left(\omega\right), we can get D=(εE)=εE+εE=0\nabla\bullet{\boldsymbol{D}}=\nabla\bullet({{\varepsilon E}}) = \nabla \varepsilon \cdot \boldsymbol E+ \varepsilon \nabla \cdot \boldsymbol E = 0, so we can get

E=εεE\nabla\boldsymbol{\cdot}\boldsymbol{E}=\frac{-\nabla\varepsilon}\varepsilon\boldsymbol{\cdot}\boldsymbol{E}

which have a definite physical meaning, that the inhomogeneity of the distribution of the medium leads to the uneven distribution of polarization charges, which are manifested as active fields.

Finally, we deduce the the Maxwell eqs in Linear Time Invariant:

×E=iωμ0H×H=iωεEE=εεEH=0\begin{aligned}&\nabla\times\boldsymbol{E}=\mathrm{i}\omega\mu_0\boldsymbol{H} \\&\nabla\times\boldsymbol{H}=-\mathrm{i}\omega\boldsymbol\varepsilon\boldsymbol{E} \\&\nabla\bullet{\boldsymbol{E}}=\frac{-\nabla\boldsymbol\varepsilon}{\boldsymbol\varepsilon}{\boldsymbol{\cdot}\boldsymbol{E}} \\&\nabla\bullet{\boldsymbol{H}}=0\end{aligned}

Helmholtz Equation

With

×(×E)=(E)2E\nabla\times(\nabla\times \textbf E)=\nabla(\nabla\bullet \textbf E)-\nabla^2\textbf E

and also for H\textbf H, we can deduce Helmholtz equation that

{2E+k02n2E+(Eεε)=02H+k02n2H+εε×(×H)=0\begin{cases}\nabla^2\boldsymbol{E}+k_0^2n^2\boldsymbol{E}+\nabla\left(\boldsymbol{E}\bullet\frac{\nabla\varepsilon}\varepsilon\right)=0\\\\\nabla^2\boldsymbol{H}+k_0^2n^2\boldsymbol{H}+\frac{\nabla\varepsilon}\varepsilon\times(\nabla\times\boldsymbol{H})=0\end{cases}

Light modes in Waveguide

First the index should be constant along the z direction.

ε(x,y,z)=ε(x,y)k=βz^\varepsilon(x, y, z) = \varepsilon(x, y)\\\textbf k = \beta \hat z

So we can deduce that (neglect ω\omega)

E(r)=E(x,y)eiβze^(x,y)H(r)=H(x,y)eiβzh^(x,y)\textbf{E}\left(\textbf{r}\right)=E\left(x,y\right){e}^{i\beta z}\boldsymbol{\hat{e}}\left(x,y\right) \\\textbf{H}\left(\textbf{r}\right)=H\left(x,y\right){e}^{i\beta z}\boldsymbol{\hat{h}}\left(x,y\right)

The amplitude and polarization related to x,yx, y, and the phase related to zz.

Let e(x,y)=E(x,y)e^(x,y),h(x,y)=H(x,y)h^(x,y){{\textbf e}}\left(x,y\right) = E\left(x,y\right)\boldsymbol{\hat{e}}\left(x,y\right) , {{\textbf h}}\left(x,y\right) = H\left(x,y\right)\boldsymbol{\hat{h}}\left(x,y\right) , which are the mode fields, which represent the distribution of the optical fields E ,H along the cross-section.

Through Helmholtz equation and decompose the model field horizontally and vertically. We can know for a specific boundary condition, the Helmholtz equation have infinite discrete eigen-solution. (skip the detailed process here

(EnHn)=(enhn)(x,y)eiβnz,n=1,2,3,\binom{\boldsymbol{E_n}}{\boldsymbol{H_n}}=\binom{\boldsymbol{e}_n}{\boldsymbol{h}_n}\left(x,y\right)\mathrm{e}^{i\beta_nz},\quad n=1,2,3,\cdotp\cdotp\cdotp

And each eigen-solution is a optical mode. But what is this mean in physics.

The physical meaning of mode and its properties

  • The most important property of the optical mode lies that the optical mode is a stable distribution along the z-direction, which means when a mode is transmitted along the longitudinal direction, its field distribution form is unchanged. However, for other (E,H)(\boldsymbol E, \boldsymbol H), the field will change when it transmits.
  • The total distribution of optical field is the linear combination of modes,
    (EH)=n(anenbnhn)(x,y)eiβnz\binom{\boldsymbol{E}}{\boldsymbol{H}}=\sum_n\binom{a_n\boldsymbol{e}_n}{b_n\boldsymbol{h}_n}\left(x,y\right)\mathrm{e}^{i\beta_nz}
  • Since the limit of boundary condition, not all modes can exist in waveguide. And in real application, in fact, we always want only one mode can exist.
  • In transmission process, the basic physics quantity is transmission constant β\beta. The real part is the phase shift in transmission and the imaginary part stands for the loss in transmission.

Solution in x-y plane

Now we have (t means x-y plane

(EtEzHtHz)=(etezhthz)eiβz\begin{pmatrix}\boldsymbol{E}_\mathrm{t}\\\\\boldsymbol{E}_z\\\\\boldsymbol{H}_\mathrm{t}\\\\\boldsymbol{H}_z\end{pmatrix}=\begin{pmatrix}\boldsymbol{e}_\mathrm{t}\\\\\boldsymbol{e}_z\\\\\boldsymbol{h}_\mathrm{t}\\\\\boldsymbol{h}_z\end{pmatrix}\mathrm{e}^\mathrm{i\beta z}

We have =t+z^z\nabla=\nabla_{\mathrm{t}}+\hat{z}\:\frac{\partial}{\partial z}, so in x-y plane, we can write Helmholtz eq (In each area, we have ε=0\nabla \varepsilon = 0

2E(x,y,z)=t2[E(x,y)eiβz]+2z2[E(x,y)eiβz]=[t2E(x,y)]eiβzβ2E(x,y)eiβz\begin{aligned} \nabla^{2}\boldsymbol{E}\left(x,y,z\right)& =\nabla_{\mathrm{t}}^{2}\Big[E\left(x\:,y\:\right)\mathrm{e}^{\mathrm{i}\beta z}\Big]+\frac{\partial^{2}}{\partial z^{2}}\Big[E\left(x\:,y\:\right)\mathrm{e}^{\mathrm{i}\beta z}\Big] \\ &=\left[\nabla_{\mathrm{t}}^{2}\mathbf{E}\left(x\:,y\:\right)\right]\mathrm{e}^{\mathrm{i}\beta z}-\beta^{2}\mathbf{E}\left(x\:,y\:\right)\mathrm{e}^{\mathrm{i}\beta z} \end{aligned}

Therefore, it Helmholtz eq can be simplified as

t2E(x,y)+(k02n2β2)E(x,y)=0t2H(x,y)+(k02n2β2)H(x,y)=0\nabla_{\mathrm{t}}^{2}\boldsymbol{E}(x,y)+(k_{0}^{2}n^{2}-\beta^{2})\boldsymbol{E}(x,y) = 0\\ \nabla_{\mathrm{t}}^{2}\boldsymbol{H}(x,y)+(k_{0}^{2}n^{2}-\beta^{2})\boldsymbol{H}(x,y) = 0

TEM

Ez=Hz=0E_z = H_z = 0, only if ω2μ0εβ2=0\omega^2\mu_0\varepsilon-\beta^2=0. The β\beta is constant for one mode, but the ε\varepsilon will change for different place.

Therefore, it exists only in a infinite uniform large medium.

TE

Hz=0H_z = 0

TM

Ez=0E_z = 0

Waveguide

plane waveguide

In this situation,

E(x,y)E(x)H(x,y)H(x)\mathbf E(x,y) \rightarrow \mathbf E(x) \\\mathbf H(x,y) \rightarrow \mathbf H(x)

We have

x^×Et(x)x=iωμ0Hz(x)x^×Ht(x)x=iωε0Ez(x)x^×Ez(x)x+iβz^×Et(x)=iωμ0Ht(x)x^×Hz(x)x+iβz^×Ht(x)=iωεEt(x)\begin{aligned}&\hat{\boldsymbol{x}}\times\frac{\partial\boldsymbol{E}_\mathrm{t}(x)}{\partial x}=\mathrm{i}\omega\mu_0\boldsymbol{H}_z(x)\\&\hat{\boldsymbol{x}}\times\frac{\partial\boldsymbol{H}_\mathrm{t}(x)}{\partial x}=-\mathrm{i}\omega\varepsilon_0\boldsymbol{E}_z(x)\\&\hat{\boldsymbol{x}}\times\frac{\partial\boldsymbol{E}_z(x)}{\partial x}+\mathrm{i}\beta\hat{\boldsymbol{z}}\times\boldsymbol{E}_\mathrm{t}(x)=\mathrm{i}\omega\mu_0\boldsymbol{H}_\mathrm{t}(x)\\&\hat{\boldsymbol{x}}\times\frac{\partial\boldsymbol{H}_z(x)}{\partial x}+\mathrm{i}\beta\hat{\boldsymbol{z}}\times\boldsymbol{H}_\mathrm{t}(x)=-\mathrm{i}\omega\varepsilon\boldsymbol{E}_\mathrm{t}(x)\end{aligned}

For TE mode, Hz=0H_z = 0.

Hx=βωμ0EyHz=iωμ0dEydx\begin{aligned}H_x&=-\frac\beta{\omega\mu_0}E_y\\H_z&=-\frac{\mathrm{i}}{\omega\mu_0}\frac{\mathrm{d}E_y}{\mathrm{d}x}\end{aligned}

So, we only need to know EyE_y to get all the components.

Step-index waveguide

It is the simple plane waveguide as below, aa is the thickness of the waveguide

n(x)={n1,x<a/2n2,x>a/2n\left(x\right)=\begin{cases}n_1,&\mid x\mid<a/2\\n_2,&\mid x\mid>a/2&\end{cases}

In each area, we have ε=0\nabla \varepsilon = 0. So the Helmholtz equation simplify as

d2Eydx2+(k02n2β2)Ey=0\frac{\mathrm{d}^2E_y}{\mathrm{d}x^2}+(k_0^2n^2-\beta^2)E_y=0

With the boundary condition that the filed in core is oscillatory, and in the cladding is decay.

Eyx>±=0E_y|_{x->\pm\infty} = 0

The solution should be

Ey=A1cos(κx) at coreEy=A1cos(2κa)eq(xa) at bottom claddingEy=A1cos(2κa)eq(x+a) at bottom cladding\begin{aligned}&E_{_y}= A_1\cos(\kappa x) &\text{ at core}\\ &E_y = A_1 \cos(2\kappa a)e^{ q(x-a)} &\text{ at bottom cladding}\\ &E_y = A_1 \cos(2\kappa a)e^{ -q(x+a)} &\text{ at bottom cladding}\end{aligned}

with

κ=(k02n12β2)12q=(β2k02n22)12tan(κa)=qκ\begin{gathered} \kappa=(k_0^2n_1^2-\beta^2)^{\frac12} \\ q=(\beta^2-k_0^2n_2^2)^{\frac12} \\\tan(\kappa a)=\frac{q}{\kappa}\end{gathered}

So

κa=mπ+arctan(q/κ)\kappa a = m\pi + \arctan(q/\kappa)

the m=0,1,2,3,...m=0,1,2,3,... here is the mode number.

Define effective index neff=β/k0n_{eff} = \beta / k_0,

(n12N2)12k0a=mπ+arctan[(N2n22n12N2)12](n_1^2-N^2)^{\frac12}k_0 a=m\pi+\arctan\left[\left(\frac{N^2-n_2^2}{n_1^2-N^2}\right)^{\frac12}\right]

When N=n2N = n_2, it reaches its cut-off width. And the light cannot propogate in the waveguide if a<wcutoff(m)a < w_{cutoff}(m).

Multi-layers waveguide (5 symmetric layers)

Transfer Matrix

Still we have

d2Eydx2+(k02nj2β2)Ey=0\frac{\mathrm{d}^2E_y}{\mathrm{d}x^2}+(k_0^2n_j^2-\beta^2)E_y=0

Define the transmission coefficient for each layer as

Uj=k02nj2β2U_j = \sqrt{k_0^2n_j^2-\beta^2}

The solution should be

Eyj=ajsin(Ujx)+bjcos(Ujx)E_{yj}=a_j\sin(U_jx)+b_j\cos(U_jx)
iωμ0hz=Uj[ajcos(Ujx)bjsin(Ujx)]{\mathrm{i}\omega\mu_0}h_z=U_j[a_j\cos(U_jx)-b_j\sin(U_jx)]

Define Transfer Matrix as

Mj(xjxj1)=[cos[Uj(xjxj1)]1Ujsin[Uj(xjxj1)]Ujsin[Uj(xjxj1)]cos[Uj(xjxj1)]]\boldsymbol{M}_j(x_j-x_{j-1})=\begin{bmatrix}\cos[U_j(x_j-x_{j-1})]&\frac{1}{U_j}\sin[U_j(x_j-x_{j-1})]\\\\-U_j\sin[U_j(x_j-x_{j-1})]&\cos[U_j(x_j-x_{j-1})]\end{bmatrix}
[eyiωμ0hz]x=xj=Mj(xjxj1)[eyiωμ0hz]x=xj1\begin{bmatrix}e_y\\\\\mathrm{i}\omega\mu_0h_z\end{bmatrix}_{x=x_j}=\boldsymbol{M}_j(x_j-x_{j-1})\begin{bmatrix}e_y\\\\\mathrm{i}\omega\mu_0h_z\end{bmatrix}_{x=x_{j-1}}

Let’s consider the boundary condition:

For the left side, x<x2x < -x_2,

Ey=blexp(Ulx)E_y = b_l \cdot exp(U_lx)

For the right side, x>x2x > x_2,

Ey=brexp(Urx)E_y = b_r \cdot exp(-U_rx)

5 layers Solution

For 5 layers

M1(x1x2)=[cos(U1h2)1U1sin(U1h2)U1sin(U1h2)cos(U1h2)]\boldsymbol{M}_{-1}(x_{-1}-x_{-2})=\begin{bmatrix}\cos(U_{-1}h_2)&\frac{1}{U_{-1}}\sin(U_{-1}h_2)\\\\-U_{-1}\sin(U_{-1}h_2)&\cos(U_{-1}h_2)\end{bmatrix}
M1(x1x1)=[cos(2U1h1)1U1sin(2U1h1)U1sin(2U1h1)cos(2U1h1)]\boldsymbol{M}_1(x_1-x_{-1})=\begin{bmatrix}\cos(2U_1h_1)&\frac{1}{U_1}\sin(2U_1h_1)\\\\-U_1\sin(2U_1h_1)&\cos(2U_1h_1)\end{bmatrix}
M2(x2x1)=[cos(U2h2)1U2sin(U2h2)U2sin(U2h2)cos(U2h2)]\boldsymbol{M}_2(x_2-x_1)=\begin{bmatrix}\cos(U_2h_2)&\frac{1}{U_2}\sin(U_2h_2)\\\\-U_2\sin(U_2h_2)&\cos(U_2h_2)\end{bmatrix}

Meff=M_{eff} =

Parabolic medium refractive index

Parabolic medium is defined as below:

n2(x)=n12(n12n22)(xa)2=n12[12Δ(xa)2]n^2(x)=n_1^2-(n_1^2-n_2^2)\left(\frac xa\right)^2 = n_1^2[1-2\Delta(\frac{x}{a})^2]

For TE mode, Hz=0H_z = 0. So we have

d2Eydx2+[k02n2(x)β2]Ey=0\frac{\mathrm{d}^2E_y}{\mathrm{d}x^2}+\left[k_0^2n^2(x)-\beta^2\right]E_y=0

Substitute n(x)n(x)

d2Eydx2+[(k02n12β2)2k02n12Δ(xa)2]Ey=0\begin{aligned} &\frac{\mathrm{d}^2E_y}{\mathrm{d}x^2}+\left[(k_0^2n_1^2-\beta^2)-2k_0^2n_1^2\Delta\left(\frac xa\right)^2\right]E_y=0\end{aligned}

Let

w02=a2V=ak0n1(2Δ)1/2ξ=xw0w_{0}^{2} =\frac{a^2}V=\frac a{k_0n_1(2\Delta)^{1/2}} \\ \xi= \frac x{w_0} \\

We deduce

d2Eydξ2+(λξ2)Ey=0λ=(k02n12β2)w02\frac{\mathrm{d}^2E_y}{\mathrm{d}\xi^2}+(\lambda-\xi^2)E_y=0 \\ \lambda=(k_0^2n_1^2-\beta^2)w_0^2

, which is the same as the Schrödinger Equation for One-Dimensional Harmonic Oscillator.

The eigenvalue is λ=2m+1,m=0,1,2,...\lambda = 2m+1, m=0,1,2,...

The solution is

P2=1(2m+1V),P=neff2n22n12n22V=k0n1(2Δ)1/2aP^2 = 1-(\frac{2m+1}{V}), \\P = \frac{n_{eff}^2-n_2^2}{n_1^2-n_2^2} \\V = k_0 n_1 (2\Delta)^{1/2}a

The field distribution is as below, dash line for m=0m=0, dot line for m=1m=1, and the solid line for m=2m=2

Symbol List

P\textbf{P}

E\textbf{E}

References

[1] 导波光学,清华大学出版社,ISBN:9787302531609


Click here to connect me at Linkedin~